EA之家——最专业的企业架构知识库;最全面的数字化转型案例库。

寿险行业数据架构规划与数据治理,附案例.PPTX

案例42页,可编辑PPTX文件

(一)寿险行业数据架构规划与数据治理要点

寿险行业数据架构规划与数据治理的主要内容包括:

(1)数据架构规划:根据寿险业务的需求和特点,设计合理的数据模型、数据仓库、数据湖、数据集市等数据存储和处理的结构和流程

元数据:是描述数据的数据,用于指示数据的来源、含义、结构、质量、关系等信息,有助于数据的管理和使用。寿险行业需要建立元数据管理机制,包括元数据的定义、采集、存储、展示、分析等功能,以提高数据的可理解性、可追溯性、可信任性等。

主数据:是寿险业务的核心数据,如客户、产品、保单、理赔等,跨越多个系统和部门,需要保持一致和准确。寿险行业需要建立主数据管理机制,包括主数据的标识、清洗、匹配、合并、分发等功能,以实现数据的标准化、集中化、共享化等。

(2)数据质量管理:通过数据质量标准、数据质量监控、数据质量报告、数据质量改进等手段,确保数据的准确性、完整性、一致性、及时性、可用性等。

数据治理:是对数据的整体管理和控制,包括数据的策略、组织、流程、技术、质量、安全等方面,以实现数据的价值最大化。寿险行业需要建立数据治理组织和框架,明确数据的责任、权利、规范、评估、改进等方面,以提升数据的有效性、合规性、安全性等。

(3)数据安全管理:通过数据分类、数据加密、数据脱敏、数据备份、数据恢复、数据审计、数据防泄露等措施,保护数据的安全性、隐私性、合规性等。

(4)数据分析应用:通过数据挖掘、数据可视化、数据智能、数据价值评估等方法,利用数据为寿险业务提供洞察、优化、创新等支持。

标准化应用:是指基于数据标准和数据质量要求,对数据进行规范化的处理和使用,以支持寿险业务的运营和决策。寿险行业需要建立数据标准化应用机制,包括数据的采集、校验、转换、存储、查询、分析、展示等功能,以提高数据的可用性、可比性、可视化等。

(二)案例

1708937575-4ffce04d92a4d6c
1708937576-4ffce04d92a4d6c
1708937576-4ffce04d92a4d6c-1
免责声明:解读章节属EA之家原创,享有内容版权。《案例》章节来源于各文库类平台,内容无法找到真正来源,如有标错或文章所使用的图片文字链接等涉及侵权,请尽快与我们联系处理,谢谢。
EA之家 » 寿险行业数据架构规划与数据治理,附案例.PPTX

发表评论

售后服务:

  • 售后服务范围 1、所有文件资料字迹清晰,可参考借鉴
    2、所有文件资料经由The Open Group认证架构师人工审核
    3、如无法下载请联系客服人员
    付费增值服务 1、文件资料内容解读微咨询
    2、文件资料衍生架构知识微咨询
    3、企业架构线上指导服务
    4、企业架构知识技能线上培训服务
    售后服务时间 周一至周五(法定节假日除外) 9:00-18:00
    免责声明 本站所提供的文件资料是EA之家原创作品或网上收集而来,所有文件资源仅供学习交流,勿使用商业用途,否则产生的一切后果将由下载用户自行承担。

Hi, 如果您有疑问,可以跟我联系哦!

联系作者
升级VIP尊享更多特权立即升级